Yang, S., Qin, H., Dai, Y., Yan, X. & López-Baldomero, A. B. Temperature distribution inversion in infrared multispectral imaging based on ensemble network. Opt. Lett. 49, 5163–5166 (2024).
Wang, T. et al. Remote referencing strategy for high-resolution coded ptychographic imaging. Opt. Lett. 48, 485–488 (2023).
Umirzakova, S., Ahmad, S., Khan, L. U. & Whangbo, T. Medical image super-resolution for smart healthcare applications: A comprehensive survey. Inform. Fusion. 103, 102075 (2024).
Jack, C. R. Jr et al. The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging. 27, 685–691 (2008).
Schwenck, J. et al. Advances in PET imaging of cancer. Nat. Rev. Cancer. 23, 474–490 (2023).
Liu, C. et al. Multi-focus image fusion based on Spatial frequency in discrete cosine transform domain. IEEE. Signal. Process. Lett. 22, 220–224 (2014).
Yang, B., Yang, C. & Huang, G. Efficient image fusion with approximate sparse representation. Int. J. Wavelets Multiresolut Inf. Process. 14, 1650024 (2016).
Zhou, Y. et al. Real-infraredSR: real-world infrared image super-resolution via thermal imager. Opt. Express. 31, 36171–36187 (2023).
Kuncheva, L. I. & Faithfull, W. J. PCA feature extraction for change detection in multidimensional unlabeled data. IEEE Trans. Neural Networks Learn. Syst. 25, 69–80 (2013).
Ermachenkova, M. K., Malashin, R. O. & Boiko, A. A. Neural network training for thermal image classification based on visible spectrum images. J. Opt. Technol. 90, 590–600 (2023).
Zhang, H., Xu, H., Tian, X., Jiang, J. & Ma, J. Image fusion Meets deep learning: A survey and perspective. Inform. Fusion. 76, 323–336 (2021).
Zhang, Y., Wu, Z., Xu, Y. & Huangfu, J. Dual-branch fusion model for lensless imaging. Opt. Express. 31, 19463–19477 (2023).
Ding, J., Du, Y., Li, W., Pei, L. & Cui, N. LG-Diff: learning to follow local class-regional guidance for nearshore image cross-modality high-quality translation. Inform. Fusion. 117, 102870 (2025).
LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86, 2278–2324. (1998).
Goodfellow, I. J. et al. Generative adversarial networks. Preprint at arXiv, (2014). https://doi.org/10.48550/arXiv.1406.2661
Ng, A. Sparse autoencoder. CS294A Lecture Notes. 72, 1–19 (2011).
Vaswani, A. et al. Attention is all you need. Preprint arXiv. https://doi.org/10.48550/arXiv.1706.03762 (2017).
Pan, L., Zhou, X., Shi, R., Zhang, J. & Yan, C. Cross-modal feature extraction and integration based RGBD saliency detection. Image Vis. Comput. 101, 103964 (2020).
Li, Y., Zhang, Y., Zeng, H., He, J. & Guo, J. Spatial relaxation transformer for image super-resolution. J. King Saud Univ. – Comput. Inform. Sci. 36 (7), 102150 (2024).
Gu, A. & Dao, T. Mamba: Linear-time sequence modeling with selective state spaces. Preprint arXiv. https://doi.org/10.48550/arXiv.2312.00752 (2023).
Liu, Y. et al. VMamba: Visual state space model. Preprint at arXiv, (2024). https://doi.org/10.48550/arXiv.2401.10166
Zhou, K., Zhang, M., Wang, H. & Tan, J. Ship detection in SAR images based on multi-scale feature extraction and adaptive feature fusion. Remote Sens. 14, 755 (2022).
Roberts, J. W., Van Aardt, J. A. & Ahmed, F. B. Assessment of image fusion procedures using entropy, image quality, and multispectral classification. J. Appl. Remote Sens. 2, 023522 (2008).
Ma, K., Zeng, K. & Wang, Z. Perceptual quality assessment for multi-exposure image fusion. IEEE Trans. Image Process. 24, 3345–3356 (2015).
Aslantas, V. & Bendes, E. A new image quality metric for image fusion: the sum of the correlations of differences. AEU – Int. J. Electron. Commun. 69, 1890–1896 (2015).
Wang, J. et al. Advancing infrared and visible image fusion with an enhanced multi-scale encoder and attention-based networks. iScience 27, 110915 (2024).
Xie, X. et al. FusionMamba: dynamic feature enhancement for multimodal image fusion with Mamba. Preprint at arXiv, (2024). https://doi.org/10.48550/arXiv.2404.09498
Kumar, B. K. S. Multifocus and multispectral image fusion based on pixel significance using discrete cosine harmonic wavelet transform. Signal. Image Video Process. 7, 1125–1143 (2013).
Liu, Y., Chen, X., Ward, R. K. & Wang, Z. J. Image fusion with convolutional sparse representation. IEEE. Signal. Process. Lett. 23, 1882–1886 (2016).
Li, H., Wu, X. J. & Kittler, J. Infrared and visible image fusion using a deep learning framework. In Proceedings of the 24th International Conference on Pattern Recognition (ICPR), IEEE, pp. 2705–2710. (2018).
Li, H. & Wu, X. J. DenseFuse: A fusion approach to infrared and visible images. IEEE Trans. Image Process. 28, 2614–2623 (2018).
Zhang, Y. et al. IFCNN: A general image fusion framework based on convolutional neural network. Inform. Fusion. 54, 99–118 (2020).
Ding, J. et al. Novel pipeline integrating cross-modality and motion model for nearshore multi-object tracking in optical video surveillance. IEEE Trans. Intell. Transp. Syst. 25 (9), 12464–12476 (2024).
Li, H., Wu, X. J. & Durrani, T. NestFuse: an infrared and visible image fusion architecture based on nest connection and spatial/channel attention models. IEEE Trans. Instrum. Meas. 69, 9645–9656 (2020).
Li, H., Wu, X. J. & Kittler, J. RFN-Nest: an end-to-end residual fusion network for infrared and visible images. Inform. Fusion. 73, 72–86 (2021).
Dong, Y., Chen, Z., Li, Z. & Gao, F. A Multi-Branch Multi-Scale deep learning image fusion algorithm based on densenet. Appl. Sci. 12 (21), 10989 (2022).
Li, X., Li, X. & Liu, W. CBFM: contrast balance infrared and visible image fusion based on contrast-Preserving guided filter. Remote Sens. 15 (12), 2969 (2023).
Liu, W., Tan, H., Cheng, X. & Li, X. ESFuse: weak edge structure perception network for infrared and visible image fusion. Electronics 13 (20), 4115 (2024).
Chen, L. & Han, J. Infrared and visible image fusion using salient decomposition based on a generative adversarial network. Appl. Opt. 60, 7017–7026 (2021).
Ma, J., Yu, W., Liang, P., Li, C. & Jiang, J. FusionGAN: A generative adversarial network for infrared and visible image fusion. Inform. Fusion. 48, 11–26 (2019).
Li, K., Qi, M., Zhuang, S., Liu, Y. & Gao, J. Noise-aware infrared polarization image fusion based on salient prior with attention-guided filtering network. Opt. Express. 31, 25781–25796 (2023).
Vs, V., Valanarasu, J. M. J., Oza, P. & Patel, V. M. Image fusion transformer. In Proceedings of the 2022 IEEE International Conference on Image Processing (ICIP), pp. 3566–3570. IEEE. (2022).
Xu, H., Ma, J., Jiang, J., Guo, X. & Ling, H. U2Fusion: A unified unsupervised image fusion network. IEEE Trans. Pattern Anal. Mach. Intell. 44, 502–518 (2020).
Ruan, J. & Xiang, S. VM-UNet: vision Mamba UNet for medical image segmentation. Preprint arXiv. https://doi.org/10.48550/arXiv.2402.02491 (2024).
Liu, X., Zhang, C. & Zhang, L. Vision Mamba: A comprehensive survey and taxonomy. Preprint at arXiv, (2024). https://doi.org/10.48550/arXiv.2405.04404
Xu, R., Li, X. & Zhang, Y. and others. A survey on Vision Mamba: Models, applications and challenges. Preprint at arXiv, (2024). https://doi.org/10.48550/arXiv.2404.18861
Huang, S., Lu, Y., Wang, W. & others Multi-scale guided feature extraction and classification algorithm for hyperspectral images. Sci. Rep. 11, 18396 (2021).
Wang, D., Liu, J., Liu, R. & Fan, X. An interactively reinforced paradigm for joint infrared-visible image fusion and saliency object detection. Inform. Fusion. 98, 101828 (2023).
Qian, Y., Liu, G., Tang, H., Xing, M. & Chang, R. BTSFusion: fusion of infrared and visible image via a mechanism of balancing texture and salience. Opt. Lasers Eng. 173, 107925 (2024).
Duan, W., Zhang, L., Colman, J., Gulli, G. & Ye, X. Multi-modal brain segmentation using hyper-fused convolutional neural network. In Machine Learning in Clinical Neuroimaging. MLCN 2021, A. Abdulkadir, et al., eds. (Springer, Cham), Lecture Notes in Computer Science, vol. 13001. (2021).
Zamir, S. W. et al. Restormer: Efficient transformer for high-resolution image restoration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5728–5739. (2022).
Huo, X. et al. HiFuse: hierarchical multi-scale feature fusion network for medical image classification. Biomed. Signal Process. Control. 87, 105534 (2024).
Lu, D., Cheng, S., Wang, L. & others Multi-scale feature progressive fusion network for remote sensing image change detection. Sci. Rep. 12, 11968 (2022).
Yi, Y., Li, Y., Du, J. & Wang, S. An infrared and visible image fusion method based on improved GAN with dropout layer. In The Proceedings of the 18th Annual Conference of China Electrotechnical Society. ACCES 2023, Q. Yang, Z. Li, and A. Luo, eds. (Springer, Singapore), Lecture Notes in Electrical Engineering, vol. 1168. (2024).
Pérez-García, F., Sparks, R. & Ourselin, S. TorchIO: A Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. Comput. Methods Programs Biomed. 208, 106236 (2021).
Qu, G., Zhang, D. & Yan, P. Information measure for performance of image fusion. Electron. Lett. 38, 1 (2002).
Kumar, B. K. S. Image fusion based on pixel significance using cross bilateral filter. Signal. Image Video Process. 9, 1193–1204 (2015).
Zhou, Z., Zhang, B. & others Fusion of infrared and visible images for night-vision context enhancement. Appl. Opt. 55, 23 (2016).
Zhou, Z., Dong, M., Wang, P. & others Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters. Inform. Fusion. 30, 15–26 (2016).
Yao, Y., Guo, P. & Xin, X. and others. Image fusion by hierarchical joint sparse representation. Cognitive Computation 6, 281–292. (2014).
Li, H., Wu, X. J. & Kittler, J. MDLatLRR: A novel decomposition method for infrared and visible image fusion. IEEE Trans. Image Process. 29, 4733–4746 (2020).
Xu, H., Ma, J. & Zhang, X. P. MEF-GAN: Multi-exposure image fusion via generative adversarial networks. IEEE Trans. Image Process. 29, 7203–7216 (2020).
Zhang, H., Xu, H., Xiao, Y., Guo, X. & Ma, J. Rethinking the image fusion: A fast unified image fusion network based on proportional maintenance of gradient and intensity. In Proceedings of the AAAI Conference on Artificial Intelligence 34, 12797–12804. (2020).
Li, W. et al. Structure-aware image fusion. Optik 172, 1–11. (2014). Hybrid DDCT-PCA based multi-sensor image fusion. Journal of Optics 43, 48–61. (2018).
Li, W., Kang, X. & Zuo, W. and others. Structure-aware image fusion. Optik 172, 1–11. (2018).
Rao, Y. J. In-fibre Bragg grating sensors. Meas. Sci. Technol. 8, 355 (1997).
Ma, J., Yu, W., Liang, P. & others DDcGAN: A dual-discriminator conditional generative adversarial network for multi-resolution image fusion. IEEE Trans. Image Process. 29, 4980–4995 (2020).
Xydeas, C. S. & Petrovic, V. Objective image fusion performance measure. Electron. Lett. 36, 308–309 (2000).
Liu, Z. et al. Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: A comparative study. IEEE Trans. Pattern Anal. Mach. Intell. 34 (1), 94–109 (2012).
Estevez, P. A., Tesmer, M., Perez, C. A. & Zurada, J. A. Normalized mutual information feature selection. IEEE Trans. Neural Networks. 20 (1), 189–201 (2009).
Cui, G., Feng, H., Xu, Z., Li, Q. & Chen, Y. Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition. Opt. Commun. 341, 199–209 (2015).
Zheng, Y., Essock, E. A., Hansen, B. C. & Haun, A. M. A new metric based on extended Spatial frequency and its application to DWT-based fusion algorithms. Inform. Fusion. 8 (2), 177–192 (2007).
Chen, L., Lin, J., Bian, Q., Liu, Y. & Zhou, J. Inhomogeneous illumination image enhancement under extremely low visibility condition. Appl. Sci. 14, 10111 (2024).
Intharachathorn, K., Jareemit, D. & Watcharapinchai, S. Potential use of an extended-distance thermal imaging camera for the assessment of thermal comfort in multi-occupant spaces. Build. Environ. 246, 110949 (2023).
Ding, J. et al. SeaTrack: rethinking observation-centric SORT for robust nearshore multiple object tracking. Pattern Recogn. 159, 111091 (2025).
Pan, Y., Yao, T., Li, Y. & Mei, T. X-linear attention networks for image captioning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10971–10980. (2020).
Li, Y., Zhao, J., Lv, Z. & Li, J. Medical image fusion method by deep learning. Int. J. Cogn. Comput. Eng. 2, 21–29 (2021).
Saragadam, V. et al. Foveated thermal computational imaging prototype using all-silicon meta-optics. Optica 11, 18–25 (2024).
Luo, Y. & Luo, Z. Infrared and visible image fusion: methods, datasets, applications, and prospects. Appl. Sci. 13, 10891 (2023).
Zhang, X. & Demiris, Y. Visible and infrared image fusion using deep learning. IEEE Trans. Pattern Anal. Mach. Intell. 45, 10535–10554 (2023).