March 29, 2025

ikayaniaamirshahzad@gmail.com

Supercharging Your MERN Stack App with Redis Caching: A Deep Dive


In today’s competitive digital landscape, application performance isn’t just a nice-to-have—it’s essential for user retention and business success. While the MERN (MongoDB, Express, Node.js, React) stack offers a robust foundation for modern web applications, introducing Redis as a caching layer can dramatically enhance performance, reduce database load, and improve scalability.

This guide will walk you through implementing Redis caching in a MERN stack application, covering everything from basic setup to advanced patterns and real-world optimization techniques.



Understanding Why Redis Matters for MERN Applications

Before diving into implementation, let’s understand why Redis is particularly valuable in a MERN context:

  1. MongoDB Query Optimization: MongoDB performs well for many operations, but complex aggregations or high-volume reads can become bottlenecks.
  2. API Response Time: Express/Node.js servers might process thousands of identical requests, repeatedly fetching the same data.
  3. State Management: React applications often require server-synchronous states that can benefit from fast, temporary storage.
  4. Microservice Communication: In distributed MERN applications, Redis can serve as a high-performance message broker.



Setting Up Redis in Your MERN Stack

Let’s start by adding Redis to a typical MERN application. We’ll need to:

  1. Install Redis locally or use a Redis cloud service
  2. Add Redis client libraries to our Node.js application
  3. Create caching middleware and utilities
  4. Implement cache invalidation strategies



Step 1: Redis Installation and Configuration

First, install Redis on your development machine. For production, consider services like Redis Labs, AWS ElastiCache, or Azure Cache for Redis.

# For Ubuntu/Debian
sudo apt-get update
sudo apt-get install redis-server

# For macOS using Homebrew
brew install redis
Enter fullscreen mode

Exit fullscreen mode



Step 2: Adding Redis to Your Express/Node.js Backend

We’ll use the ioredis library, which offers a robust Redis client with Promise support:

npm install ioredis
Enter fullscreen mode

Exit fullscreen mode

Now, let’s create a Redis client configuration:

// src/config/redis.js
const Redis = require('ioredis');

// Configure Redis client with options
const redisClient = new Redis({
  host: process.env.REDIS_HOST || 'localhost',
  port: process.env.REDIS_PORT || 6379,
  password: process.env.REDIS_PASSWORD || '',
  retryStrategy: (times) => {
    // Exponential backoff for reconnection
    return Math.min(times * 50, 2000);
  }
});

// Handle connection events
redisClient.on('connect', () => {
  console.log('Redis client connected');
});

redisClient.on('error', (err) => {
  console.error('Redis client error:', err);
});

module.exports = redisClient;
Enter fullscreen mode

Exit fullscreen mode



Step 3: Creating a Caching Middleware

Let’s create a flexible caching middleware for Express routes:

// src/middleware/cacheMiddleware.js
const redisClient = require('../config/redis');

/**
 * Middleware for caching Express route responses
 * @param {String} prefix - Cache key prefix for the route
 * @param {Number} expiry - Cache expiration in seconds
 * @param {Function} customKeyFn - Optional function to generate custom keys
 */
const cacheMiddleware = (prefix, expiry = 3600, customKeyFn) => {
  return async (req, res, next) => {
    // Generate cache key based on route and params
    const key = customKeyFn 
      ? `cache:${prefix}:${customKeyFn(req)}`
      : `cache:${prefix}:${req.originalUrl}`;

    try {
      // Try to get cached response
      const cachedData = await redisClient.get(key);

      if (cachedData) {
        console.log(`Cache hit for ${key}`);
        return res.json(JSON.parse(cachedData));
      }

      // If no cache, store original res.json method and override it
      const originalJsonFn = res.json;
      res.json = function(data) {
        // Don't cache error responses
        if (res.statusCode >= 200 && res.statusCode < 300) {
          redisClient.set(key, JSON.stringify(data), 'EX', expiry);
          console.log(`Cache set for ${key}`);
        }
        // Restore original json function
        return originalJsonFn.call(this, data);
      };

      next();
    } catch (error) {
      console.error('Redis cache error:', error);
      // Continue without caching on error
      next();
    }
  };
};

module.exports = cacheMiddleware;
Enter fullscreen mode

Exit fullscreen mode



Step 4: Implementing Cache Invalidation

Cache invalidation is crucial for maintaining data accuracy. Let’s create a utility to manage this:

// src/utils/cacheManager.js
const redisClient = require('../config/redis');

class CacheManager {
  /**
   * Invalidate cache keys matching a pattern
   * @param {String} pattern - Pattern to match keys
   */
  static async invalidatePattern(pattern) {
    const keys = await redisClient.keys(`cache:${pattern}*`);
    if (keys.length > 0) {
      await redisClient.del(keys);
      console.log(`Invalidated ${keys.length} cache keys matching ${pattern}`);
    }
    return keys.length;
  }

  /**
   * Invalidate specific cache key
   * @param {String} prefix - Cache key prefix 
   * @param {String} key - Specific key identifier
   */
  static async invalidateKey(prefix, key) {
    const fullKey = `cache:${prefix}:${key}`;
    await redisClient.del(fullKey);
    console.log(`Invalidated cache key ${fullKey}`);
  }

  /**
   * Warm up cache with data
   * @param {String} prefix - Cache key prefix
   * @param {String} key - Specific key identifier
   * @param {Object} data - Data to cache
   * @param {Number} expiry - Cache expiration in seconds
   */
  static async warmUp(prefix, key, data, expiry = 3600) {
    const fullKey = `cache:${prefix}:${key}`;
    await redisClient.set(fullKey, JSON.stringify(data), 'EX', expiry);
    console.log(`Warmed up cache for ${fullKey}`);
  }
}

module.exports = CacheManager;
Enter fullscreen mode

Exit fullscreen mode



Implementing Redis Caching in Real-World MERN Scenarios

Now let’s implement these tools in various parts of a MERN application:

Scenario 1: Caching Product Listings

// src/routes/products.js
const express = require('express');
const router = express.Router();
const ProductController = require('../controllers/productController');
const cacheMiddleware = require('../middleware/cacheMiddleware');
const CacheManager = require('../utils/cacheManager');

// GET all products with caching (1 hour cache)
router.get("https://dev.to/", 
  cacheMiddleware('products', 3600), 
  ProductController.getAllProducts
);

// GET product by ID with caching (3 hours cache)
router.get('/:id', 
  cacheMiddleware('product', 10800, req => req.params.id), 
  ProductController.getProductById
);

// POST a new product and invalidate relevant caches
router.post("https://dev.to/", async (req, res) => {
  try {
    const newProduct = await ProductController.createProduct(req.body);
    // Invalidate product listings cache after creating new product
    await CacheManager.invalidatePattern('products');
    res.status(201).json(newProduct);
  } catch (error) {
    res.status(400).json({ error: error.message });
  }
});

// PUT update product and invalidate specific caches
router.put('/:id', async (req, res) => {
  try {
    const updatedProduct = await ProductController.updateProduct(req.params.id, req.body);
    // Invalidate both the specific product and the product listings
    await CacheManager.invalidateKey('product', req.params.id);
    await CacheManager.invalidatePattern('products');
    res.json(updatedProduct);
  } catch (error) {
    res.status(400).json({ error: error.message });
  }
});

module.exports = router;
Enter fullscreen mode

Exit fullscreen mode

Scenario 2: User Dashboard with Aggregated Data

User dashboards often require complex data aggregation that’s perfect for caching:

// src/controllers/dashboardController.js
const User = require('../models/User');
const Order = require('../models/Order');
const Product = require('../models/Product');
const redisClient = require('../config/redis');
const CacheManager = require('../utils/cacheManager');

class DashboardController {
  /**
   * Get user dashboard data with caching
   */
  static async getUserDashboard(req, res) {
    const userId = req.params.userId;
    const cacheKey = `dashboard:${userId}`;

    try {
      // Try to get cached dashboard data
      const cachedDashboard = await redisClient.get(cacheKey);

      if (cachedDashboard) {
        return res.json(JSON.parse(cachedDashboard));
      }

      // If no cache, perform expensive aggregation
      const user = await User.findById(userId);

      // Get recent orders
      const recentOrders = await Order.find({ userId })
        .sort({ createdAt: -1 })
        .limit(5)
        .populate('products');

      // Get order statistics
      const orderStats = await Order.aggregate([
        { $match: { userId: userId } },
        { $group: {
            _id: null,
            totalSpent: { $sum: '$totalAmount' },
            averageOrder: { $avg: '$totalAmount' },
            orderCount: { $sum: 1 }
          }
        }
      ]);

      // Get recommended products
      const recommendedProducts = await Product.find({
        category: { $in: user.preferences.categories }
      }).limit(5);

      // Assemble dashboard data
      const dashboardData = {
        user: {
          name: user.name,
          email: user.email,
          memberSince: user.createdAt
        },
        recentOrders,
        orderStats: orderStats[0] || { totalSpent: 0, averageOrder: 0, orderCount: 0 },
        recommendedProducts,
        lastUpdated: new Date()
      };

      // Cache dashboard data for 30 minutes
      await redisClient.set(cacheKey, JSON.stringify(dashboardData), 'EX', 1800);

      return res.json(dashboardData);
    } catch (error) {
      console.error('Dashboard error:', error);
      return res.status(500).json({ error: 'Failed to load dashboard data' });
    }
  }

  /**
   * Invalidate user dashboard cache
   */
  static async invalidateUserDashboard(userId) {
    await redisClient.del(`dashboard:${userId}`);
  }
}

module.exports = DashboardController;
Enter fullscreen mode

Exit fullscreen mode

Scenario 3: Real-time Product Inventory with Redis Pub/Sub

Redis isn’t just for caching—it’s also great for real-time updates using Pub/Sub:

// src/services/inventoryService.js
const redisClient = require('../config/redis');
const Redis = require('ioredis');
const Product = require('../models/Product');
const CacheManager = require('../utils/cacheManager');

// Create separate Redis client for subscription
const subClient = new Redis({
  host: process.env.REDIS_HOST || 'localhost',
  port: process.env.REDIS_PORT || 6379,
  password: process.env.REDIS_PASSWORD || ''
});

class InventoryService {
  /**
   * Initialize inventory subscription
   */
  static initSubscription() {
    // Subscribe to inventory updates channel
    subClient.subscribe('inventory-updates');

    subClient.on('message', async (channel, message) => {
      if (channel === 'inventory-updates') {
        const update = JSON.parse(message);

        try {
          // Update product in database
          await Product.findByIdAndUpdate(update.productId, {
            $set: { stockCount: update.newStock }
          });

          // Invalidate related caches
          await CacheManager.invalidateKey('product', update.productId);
          await CacheManager.invalidatePattern('products');

          console.log(`Inventory updated for product ${update.productId}: ${update.newStock} units`);
        } catch (error) {
          console.error('Inventory update error:', error);
        }
      }
    });

    console.log('Inventory subscription initialized');
  }

  /**
   * Update product inventory
   */
  static async updateInventory(productId, newStockCount) {
    try {
      // Publish inventory update
      await redisClient.publish('inventory-updates', JSON.stringify({
        productId,
        newStock: newStockCount,
        timestamp: Date.now()
      }));

      return true;
    } catch (error) {
      console.error('Failed to publish inventory update:', error);
      return false;
    }
  }
}

module.exports = InventoryService;
Enter fullscreen mode

Exit fullscreen mode

Initialize this service when your app starts:

// src/server.js
const express = require('express');
const mongoose = require('mongoose');
const InventoryService = require('./services/inventoryService');

// ... other imports and setup

// Initialize inventory subscription
InventoryService.initSubscription();

// ... rest of server setup
Enter fullscreen mode

Exit fullscreen mode



Advanced Redis Caching Patterns for MERN Applications

Let’s explore some advanced Redis caching patterns tailored for MERN applications:

Pattern 1: Cache Layering with TTL Hierarchy

Different data types need different cache durations. Let’s implement a more sophisticated caching strategy:

// src/utils/advancedCache.js
const redisClient = require('../config/redis');

/**
 * Strategic cache utility with layered TTLs and data transformations
 */
class StrategicCache {
  /**
   * Cache layers with different TTLs
   * @enum {Object}
   */
  static LAYERS = {
    VOLATILE: { name: 'volatile', ttl: 60 },          // 1 minute
    STANDARD: { name: 'standard', ttl: 3600 },        // 1 hour
    EXTENDED: { name: 'extended', ttl: 86400 },       // 1 day
    STATIC: { name: 'static', ttl: 604800 }           // 1 week
  };

  /**
   * Get item from layered cache
   * @param {String} key - Cache key
   * @param {Function} fetchFn - Function to fetch data if not cached
   * @param {Object} options - Caching options
   */
  static async getOrSet(key, fetchFn, options = {}) {
    const {
      layer = this.LAYERS.STANDARD,
      transform = data => data,
      compressThreshold = 10000, // Bytes
      shouldCache = () => true
    } = options;

    const fullKey = `${layer.name}:${key}`;

    try {
      // Try to get from cache
      const cachedData = await redisClient.get(fullKey);

      if (cachedData) {
        const parsed = cachedData.startsWith('COMPRESSED:') 
          ? this._decompress(cachedData.substring(11))
          : JSON.parse(cachedData);

        return parsed;
      }

      // If not in cache, fetch data
      const freshData = await fetchFn();

      // Only cache if condition is met
      if (shouldCache(freshData)) {
        // Transform data before caching
        const transformedData = transform(freshData);
        const serialized = JSON.stringify(transformedData);

        // Compress if above threshold
        if (serialized.length > compressThreshold) {
          const compressed = this._compress(serialized);
          await redisClient.set(fullKey, `COMPRESSED:${compressed}`, 'EX', layer.ttl);
        } else {
          await redisClient.set(fullKey, serialized, 'EX', layer.ttl);
        }
      }

      return freshData;
    } catch (error) {
      console.error(`Cache error for ${fullKey}:`, error);
      // Fallback to fetching data directly
      return await fetchFn();
    }
  }

  /**
   * Simple compress function (in real app, use proper compression library)
   */
  static _compress(data) {
    // In a real implementation, use a library like zlib
    // This is just a placeholder
    return Buffer.from(data).toString('base64');
  }

  /**
   * Simple decompress function
   */
  static _decompress(data) {
    // In a real implementation, use a library like zlib
    // This is just a placeholder
    return JSON.parse(Buffer.from(data, 'base64').toString());
  }
}

module.exports = StrategicCache;
Enter fullscreen mode

Exit fullscreen mode

Using this layered cache:

// src/controllers/categoryController.js
const Category = require('../models/Category');
const Product = require('../models/Product');
const StrategicCache = require('../utils/advancedCache');

class CategoryController {
  /**
   * Get all categories with products
   */
  static async getCategoriesWithProducts(req, res) {
    try {
      const categories = await StrategicCache.getOrSet(
        'categories-with-products',
        async () => {
          const cats = await Category.find();

          // Enhance with product counts
          const enhancedCategories = await Promise.all(cats.map(async (cat) => {
            const count = await Product.countDocuments({ category: cat._id });
            return {
              ...cat.toObject(),
              productCount: count
            };
          }));

          return enhancedCategories;
        },
        {
          layer: StrategicCache.LAYERS.EXTENDED, // Categories change infrequently
          transform: (data) => {
            // Transform before caching to optimize
            return data.map(cat => ({
              id: cat._id,
              name: cat.name,
              slug: cat.slug,
              productCount: cat.productCount
            }));
          },
          shouldCache: (data) => data.length > 0 // Only cache if we have categories
        }
      );

      res.json(categories);
    } catch (error) {
      res.status(500).json({ error: error.message });
    }
  }
}

module.exports = CategoryController;
Enter fullscreen mode

Exit fullscreen mode



Pattern 2: Implementing a Cache-Aside Pattern for MongoDB Queries

For frequently accessed MongoDB documents, let’s implement a Cache-Aside pattern:

// src/utils/mongoCache.js
const redisClient = require('../config/redis');

class MongoCache {
  /**
   * Create a cached version of a Mongoose model's findById method
   * @param {Model} model - Mongoose model
   * @param {Object} options - Caching options
   */
  static createCachedModel(model, options = {}) {
    const {
      ttl = 3600,
      prefix = model.modelName.toLowerCase(),
      excludeFields = [],
      includeFields = null,
      populateOptions = null
    } = options;

    return {
      /**
       * Cached version of findById
       */
      async findById(id, projection) {
        const cacheKey = `mongo:${prefix}:${id}`;

        try {
          // Try to get from cache
          const cachedDoc = await redisClient.get(cacheKey);

          if (cachedDoc) {
            return JSON.parse(cachedDoc);
          }

          // If not in cache, get from database
          let query = model.findById(id, projection);

          // Apply populate if specified
          if (populateOptions) {
            query = query.populate(populateOptions);
          }

          const doc = await query.lean();

          if (!doc) return null;

          // Filter fields if needed
          let filteredDoc = { ...doc };

          if (excludeFields.length > 0) {
            excludeFields.forEach(field => {
              delete filteredDoc[field];
            });
          }

          if (includeFields) {
            const newDoc = {};
            includeFields.forEach(field => {
              if (filteredDoc[field] !== undefined) {
                newDoc[field] = filteredDoc[field];
              }
            });
            filteredDoc = newDoc;
          }

          // Cache the document
          await redisClient.set(
            cacheKey, 
            JSON.stringify(filteredDoc), 
            'EX', 
            ttl
          );

          return doc;
        } catch (error) {
          console.error(`Cache error for ${cacheKey}:`, error);
          // Fallback to regular findById
          return model.findById(id, projection).lean();
        }
      },

      /**
       * Invalidate cache for a specific document
       */
      async invalidateById(id) {
        await redisClient.del(`mongo:${prefix}:${id}`);
      },

      /**
       * Original model reference
       */
      model
    };
  }
}

module.exports = MongoCache;
Enter fullscreen mode

Exit fullscreen mode

Using the cached model:

// src/models/cachedModels.js
const Product = require('./Product');
const User = require('./User');
const MongoCache = require('../utils/mongoCache');

// Create cached versions of models
const CachedProduct = MongoCache.createCachedModel(Product, {
  ttl: 3600, // 1 hour cache
  excludeFields: ['__v', 'updatedAt']
});

const CachedUser = MongoCache.createCachedModel(User, {
  ttl: 1800, // 30 minutes cache
  includeFields: ['_id', 'name', 'email', 'role', 'preferences'],
  populateOptions: {
    path: 'preferences.favorites',
    select: 'name price imageUrl'
  }
});

module.exports = {
  CachedProduct,
  CachedUser
};
Enter fullscreen mode

Exit fullscreen mode

In controllers:

// src/controllers/userController.js
const { CachedUser } = require('../models/cachedModels');

class UserController {
  /**
   * Get user by ID
   */
  static async getUserById(req, res) {
    try {
      const user = await CachedUser.findById(req.params.id);

      if (!user) {
        return res.status(404).json({ error: 'User not found' });
      }

      res.json(user);
    } catch (error) {
      res.status(500).json({ error: error.message });
    }
  }

  /**
   * Update user
   */
  static async updateUser(req, res) {
    try {
      const user = await CachedUser.model.findByIdAndUpdate(
        req.params.id,
        req.body,
        { new: true }
      );

      if (!user) {
        return res.status(404).json({ error: 'User not found' });
      }

      // Invalidate the cache
      await CachedUser.invalidateById(req.params.id);

      res.json(user);
    } catch (error) {
      res.status(500).json({ error: error.message });
    }
  }
}

module.exports = UserController;
Enter fullscreen mode

Exit fullscreen mode



Connecting Redis Caching to the React Frontend

Let’s see how to leverage our Redis cache to boost the React frontend performance:

Example 1: Implementing Cache-Aware API Clients

// src/client/services/api.js
import axios from 'axios';

class ApiService {
  constructor() {
    this.client = axios.create({
      baseURL: '/api',
      headers: {
        'Content-Type': 'application/json',
      },
    });

    // Track cache markers from headers
    this.cacheStatus = new Map();

    // Add response interceptor to detect cache hits
    this.client.interceptors.response.use(response => {
      // Check for cache status header
      const cacheStatus = response.headers['x-cache-status'];
      if (cacheStatus) {
        this.cacheStatus.set(response.config.url, {
          status: cacheStatus,
          time: new Date()
        });
      }
      return response;
    });
  }

  /**
   * Get products with optional cache control
   */
  async getProducts(options = {}) {
    const { bypassCache = false } = options;

    try {
      const headers = {};

      // Add cache control header if needed
      if (bypassCache) {
        headers['X-Bypass-Cache'] = 'true';
      }

      const response = await this.client.get('/products', { headers });
      return response.data;
    } catch (error) {
      console.error('Failed to fetch products:', error);
      throw error;
    }
  }

  /**
   * Get cache status for a specific endpoint
   */
  getCacheStatus(endpoint) {
    return this.cacheStatus.get(endpoint);
  }
}

export default new ApiService();
Enter fullscreen mode

Exit fullscreen mode

On the backend, we’ll need to update our caching middleware to handle headers:

// src/middleware/cacheMiddleware.js (updated)
const redisClient = require('../config/redis');

const cacheMiddleware = (prefix, expiry = 3600, customKeyFn) => {
  return async (req, res, next) => {
    // Skip cache if bypass header is present
    if (req.headers['x-bypass-cache'] === 'true') {
      return next();
    }

    // Generate cache key based on route and params
    const key = customKeyFn 
      ? `cache:${prefix}:${customKeyFn(req)}`
      : `cache:${prefix}:${req.originalUrl}`;

    try {
      // Try to get cached response
      const cachedData = await redisClient.get(key);

      if (cachedData) {
        console.log(`Cache hit for ${key}`);
        // Add cache status header
        res.setHeader('X-Cache-Status', 'HIT');
        return res.json(JSON.parse(cachedData));
      }

      // Add cache status header for misses
      res.setHeader('X-Cache-Status', 'MISS');

      // If no cache, store original res.json method and override it
      const originalJsonFn = res.json;
      res.json = function(data) {
        // Don't cache error responses
        if (res.statusCode >= 200 && res.statusCode < 300) {
          redisClient.set(key, JSON.stringify(data), 'EX', expiry);
          console.log(`Cache set for ${key}`);
        }
        // Restore original json function
        return originalJsonFn.call(this, data);
      };

      next();
    } catch (error) {
      console.error('Redis cache error:', error);
      // Continue without caching on error
      next();
    }
  };
};

module.exports = cacheMiddleware;
Enter fullscreen mode

Exit fullscreen mode

Example 2: React Component with Cache-Aware Data Fetching

// src/client/components/ProductList.jsx
import React, { useState, useEffect } from 'react';
import apiService from '../services/api';

const ProductList = () => {
  const [products, setProducts] = useState([]);
  const [loading, setLoading] = useState(true);
  const [cacheInfo, setCacheInfo] = useState(null);
  const [refreshCount, setRefreshCount] = useState(0);

  useEffect(() => {
    const fetchProducts = async (bypassCache = false) => {
      setLoading(true);
      try {
        await apiService.getProducts({ bypassCache });
        const products = await apiService.getProducts();
        setProducts(products);

        // Get cache status after fetch
        const status = apiService.getCacheStatus('/products');
        setCacheInfo(status);
      } catch (error) {
        console.error('Error fetching products:', error);
      } finally {
        setLoading(false);
      }
    };

    fetchProducts(refreshCount > 0);
  }, [refreshCount]);

  const handleRefresh = () => {
    setRefreshCount(prev => prev + 1);
  };

  return (
    

Products

{cacheInfo && (

{cacheInfo.status} Last updated: {new Date(cacheInfo.time).toLocaleTimeString()}

)}
{loading ? (

Loading products...

) : (
{products.map(product => (
{product.name}

{product.name}

${product.price.toFixed(2)}

{product.description}

))}
)}
); }; export default ProductList;
Enter fullscreen mode

Exit fullscreen mode



Conclusion: Best Practices for Redis Caching in MERN Applications

Implementing Redis caching in a MERN stack application offers significant performance benefits, but it requires careful planning and implementation. Here are the key takeaways:

Strategic Caching: Not everything needs to be cached. Focus on:

  • Expensive database queries
  • Frequently accessed data
  • Data that doesn’t change often
  • Resource-intensive computations

Cache Invalidation Discipline: The hardest part of caching is knowing when to invalidate. Implement:

  • Proactive invalidation on updates
  • Time-based expiration (TTL)
  • Version-based invalidation for rapidly changing data

Layered Caching Approach: Implement different caching strategies for different data types:

  • Short-lived for volatile data
  • Long-lived for reference data
  • Custom TTLs based on update frequency

Monitor and Optimize: Regularly check:

  • Cache hit/miss ratio
  • Memory usage
  • Key distribution
  • Response time improvements

Beyond Simple Caching: Use Redis for:

  • Session management
  • Rate limiting
  • Real-time updates with Pub/Sub
  • Job queues for background processing

By following these best practices, you can build a high-performance MERN stack application that scales efficiently and provides an excellent user experience.
Remember that caching is both an art and a science—you’ll need to continuously monitor, test, and adjust your caching strategy as your application grows and evolves.



Source link

Leave a Comment