March 5, 2025
Challenges & Solutions For Monitoring at Hyperscale
“What is not measured, cannot be improved.” This quote has become a guiding principle for teams training foundation models. When you’re dealing with complex, large-scale AI systems, things can spiral quickly without the right oversight. Operating at hyperscale poses significant challenges for teams, from the large volume of data generated to the unpredictability of hardware failures and the need for efficient resource management. These issues require strategic solutions, that’s why monitoring isn’t just a nice-to-have—it’s the backbone of transparency, reproducibility, and efficiency. During my talk at NeurIPS, I broke down five key lessons learned from teams facing large-scale model training