Articles for category: AI Research

[2411.19553] Analysis of High-dimensional Gaussian Labeled-unlabeled Mixture Model via Message-passing Algorithm

[Submitted on 29 Nov 2024 (v1), last revised 13 Mar 2025 (this version, v2)] View a PDF of the paper titled Analysis of High-dimensional Gaussian Labeled-unlabeled Mixture Model via Message-passing Algorithm, by Xiaosi Gu and Tomoyuki Obuchi View PDF HTML (experimental) Abstract:Semi-supervised learning (SSL) is a machine learning methodology that leverages unlabeled data in conjunction with a limited amount of labeled data. Although SSL has been applied in various applications and its effectiveness has been empirically demonstrated, it is still not fully understood when and why SSL performs well. Some existing theoretical studies have attempted to address this issue by

Google Research launches new scientific research tool, AI co-scientist

Today Google is launching an AI co-scientist, a new AI system built on Gemini 2.0 designed to aid scientists in creating novel hypotheses and research plans. Researchers can specify a research goal — for example, to better understand the spread of a disease-causing microbe — using natural language, and the AI co-scientist will propose testable hypotheses, along with a summary of relevant published literature and a possible experimental approach. AI co-scientist is a collaborative tool to help experts gather research and refine their work — it’s not meant to automate the scientific process. We’re excited to see how researchers will

Reddit – Heart of the internet

We value your privacy Reddit and its partners use cookies and similar technologies to provide you with a better experience. By accepting all cookies, you agree to our use of cookies to deliver and maintain our services and site, improve the quality of Reddit, personalize Reddit content and advertising, and measure the effectiveness of advertising. By rejecting non-essential cookies, Reddit may still use certain cookies to ensure the proper functionality of our platform. For more information, please see our Cookie Notice and our Privacy Policy. Source link

Reddit – Heart of the internet

We value your privacy Reddit and its partners use cookies and similar technologies to provide you with a better experience. By accepting all cookies, you agree to our use of cookies to deliver and maintain our services and site, improve the quality of Reddit, personalize Reddit content and advertising, and measure the effectiveness of advertising. By rejecting non-essential cookies, Reddit may still use certain cookies to ensure the proper functionality of our platform. For more information, please see our Cookie Notice and our Privacy Policy. Source link

Reddit – Heart of the internet

We value your privacy Reddit and its partners use cookies and similar technologies to provide you with a better experience. By accepting all cookies, you agree to our use of cookies to deliver and maintain our services and site, improve the quality of Reddit, personalize Reddit content and advertising, and measure the effectiveness of advertising. By rejecting non-essential cookies, Reddit may still use certain cookies to ensure the proper functionality of our platform. For more information, please see our Cookie Notice and our Privacy Policy. Source link

Reddit – Heart of the internet

We value your privacy Reddit and its partners use cookies and similar technologies to provide you with a better experience. By accepting all cookies, you agree to our use of cookies to deliver and maintain our services and site, improve the quality of Reddit, personalize Reddit content and advertising, and measure the effectiveness of advertising. By rejecting non-essential cookies, Reddit may still use certain cookies to ensure the proper functionality of our platform. For more information, please see our Cookie Notice and our Privacy Policy. Source link

Reddit – Heart of the internet

We value your privacy Reddit and its partners use cookies and similar technologies to provide you with a better experience. By accepting all cookies, you agree to our use of cookies to deliver and maintain our services and site, improve the quality of Reddit, personalize Reddit content and advertising, and measure the effectiveness of advertising. By rejecting non-essential cookies, Reddit may still use certain cookies to ensure the proper functionality of our platform. For more information, please see our Cookie Notice and our Privacy Policy. Source link

Reddit – Heart of the internet

We value your privacy Reddit and its partners use cookies and similar technologies to provide you with a better experience. By accepting all cookies, you agree to our use of cookies to deliver and maintain our services and site, improve the quality of Reddit, personalize Reddit content and advertising, and measure the effectiveness of advertising. By rejecting non-essential cookies, Reddit may still use certain cookies to ensure the proper functionality of our platform. For more information, please see our Cookie Notice and our Privacy Policy. Source link

a metadata format for ML-ready datasets

Machine learning (ML) practitioners looking to reuse existing datasets to train an ML model often spend a lot of time understanding the data, making sense of its organization, or figuring out what subset to use as features. So much time, in fact, that progress in the field of ML is hampered by a fundamental obstacle: the wide variety of data representations. ML datasets cover a broad range of content types, from text and structured data to images, audio, and video. Even within datasets that cover the same types of content, every dataset has a unique ad hoc arrangement of files

Understanding RL Vision

Contents In this article, we apply interpretability techniques to a reinforcement learning (RL) model trained to play the video game CoinRun . Using attribution combined with dimensionality reduction as in , we build an interface for exploring the objects detected by the model, and how they influence its value function and policy. We leverage this interface in several ways. Dissecting failure. We perform a step-by-step analysis of the agent’s behavior in cases where it failed to achieve the maximum reward, allowing us to understand what went wrong, and why. For example, one case of failure was caused by an obstacle