March 5, 2025
Understanding Convolutions on Graphs
Contents This article is one of two Distill publications about graph neural networks. Take a look at A Gentle Introduction to Graph Neural Networks for a companion view on many things graph and neural network related. Many systems and interactions – social networks, molecules, organizations, citations, physical models, transactions – can be represented quite naturally as graphs. How can we reason about and make predictions within these systems? One idea is to look at tools that have worked well in other domains: neural networks have shown immense predictive power in a variety of learning tasks. However, neural networks have been