March 31, 2025
VideoMind: A Role-Based Agent for Temporal-Grounded Video Understanding
LLMs have shown impressive capabilities in reasoning tasks like Chain-of-Thought (CoT), enhancing accuracy and interpretability in complex problem-solving. While researchers are extending these capabilities to multi-modal domains, videos present unique challenges due to their temporal dimension. Unlike static images, videos require understanding dynamic interactions over time. Current visual CoT methods excel with static inputs but struggle with video content because they cannot explicitly localize or revisit specific moments in sequences. Humans overcome these challenges by breaking down complex problems, identifying and revisiting key moments, and synthesizing observations into coherent answers. This approach highlights the need for AI systems to manage